MATH 303 – Measures and Integration Homework 1

Problem 1. Let $U \subseteq \mathbb{R}^d$ be an open set. Show that U can be written as a disjoint union of countably many half-open boxes (i.e., sets of the form $B = \prod_{i=1}^d [a_i, b_i)$).

Solution: For each $n \in \mathbb{Z}^d$ and $m \ge 0$, let $B(m, n) = 2^{-m}(n + [0, 1)^d)$. Note that for each m, the family $(B(m, n))_{n \in \mathbb{Z}^d}$ partitions \mathbb{R}^d into disjoint half-open cubes of side length 2^{-m} .

Let $\boldsymbol{x} \in U$. Then there exists $m \geq 0$ and $\boldsymbol{n} \in \mathbb{Z}^d$ such that $\boldsymbol{x} \in B(m, \boldsymbol{n})$ and $B(m, \boldsymbol{n}) \subseteq U$. Let $m(\boldsymbol{x}) = \min\{m \geq 0 : \exists \boldsymbol{n} \in \mathbb{Z}^d, \boldsymbol{x} \in B(m, \boldsymbol{n}) \subseteq U\}$. Then let $\boldsymbol{n}(\boldsymbol{x}) \in \mathbb{Z}^d$ such that $\boldsymbol{x} \in B(m(\boldsymbol{x}), \boldsymbol{n}(\boldsymbol{x}))$. As noted above, the family $(B(m(\boldsymbol{x}), \boldsymbol{n}))_{\boldsymbol{n} \in \mathbb{Z}^d}$ partitions \mathbb{R}^d into disjoint half-open cubes, so \boldsymbol{x} belongs to exactly one of the cubes, making $\boldsymbol{n}(\boldsymbol{x})$ well-defined. In words, $B(m(\boldsymbol{x}), \boldsymbol{n}(\boldsymbol{x}))$ is the largest "dyadic cube" containing \boldsymbol{x} and fully contained in U.

We claim that for $x, y \in U$, either $B(m(x), n(x)) \cap B(m(y), n(y)) = \emptyset$ or B(m(x), n(x)) = B(m(y), n(y)). Indeed, if the two sets intersect, then one must be contained in the other. But from the minimality of m(x) and m(y), this implies that the half-open boxes coincide.

Letting $I = \{(m(\boldsymbol{x}), n(\boldsymbol{x})) : \boldsymbol{x} \in U\}$, we therefore have $U = \bigcup_{(m,\boldsymbol{n})\in I} B(m,\boldsymbol{n})$, which expresses U as a countable disjoint union of half-open boxes.